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Coupled order-parameter system on a scale-free network
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The system of two scalar order parameters on a complex scale-free network is analyzed in the spirit of
Landau theory. To add a microscopic background to the phenomenological approach, we also study a particular
spin Hamiltonian that leads to coupled scalar order behavior using the mean-field approximation. Our results
show that the system is characterized by either of two types of ordering: either one of the two order parameters
is zero or both are nonzero but have the same value. While the critical exponents do not differ from those of

a model with a single order parameter on a scale-free network, there are notable differences for the amplitude
ratios and the susceptibilities. Another peculiarity of the model is that the transverse susceptibility is divergent
at all T<T,, when O(n) symmetry is present. This behavior is related to the appearance of Goldstone modes.
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I. INTRODUCTION

The topology of many natural and manmade networks
(social networks, biological, technological, and transporta-
tion systems) strongly differs from the topology of regular
lattices or even random graphs. Often these networks show
scale-free behavior [1-3]—the probability of a randomly
chosen node to have a degree k (to have k links) follows a
power law

P(k) = Ak™. (1)

Other integral parts of many real networks are a small-world
effect and high clustering, resulting in specific features of
cooperative phenomena on such systems. This has sparked
interest in the analysis of different spin models on complex
networks [4]. Such models have interesting applications. For
example, the opinion of each individual of a social network
may be represented by an Ising spin, e.g., for simple YES or
NO alternatives. Such a model may describe phenomena of
opinion formation, namely, individuals change their mind
under the influence of their acquaintances [5]. Other more
physical examples are given by assemblies of nanoscale par-
ticles with internal degrees of freedom, e.g., a spin [6]. These
structures may assemble in different geometrical or fractal
forms; therefore, spin models on scale-free networks can be
used to mimic integrated nanosystems with nontrivial archi-
tecture [7].

The properties of the order-disorder phase transition of
the Ising model on complex networks strongly depend on the
node degree distribution (1). Numerical simulations [8] and
analytical calculations [9] of the Ising model on Barabasi-
Albert scale-free networks (A=3) as well as different analyti-
cal approaches [10,11] and Monte Carlo simulations [12] for
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the Ising model on networks with arbitrary degree distribu-
tions have been performed. Three types of behavior were
found depending on the respective behavior of the moments
(k*) and (k*) of the degree distribution, which are related to
the value of the \ exponent. Namely, if (k*) and (k*) are
finite (A >5), the behavior of the system is described by the
standard mean-field critical exponents. If (k*) diverges and
(k) is finite, which corresponds to 3 <<\ =35, the critical be-
havior is governed by either mean-field exponents with loga-
rithmic corrections (A=5) or by nontrivial A-dependent criti-
cal exponents. Finally, if both (k*) and (k?) diverge (2<<\
=3), the critical temperature becomes divergent (for infinite-
size networks), and the system is always ordered. Further-
more, other models on scale-free networks, namely, the XY
[13] and the Potts [14,15] models (for a more detailed list,
see, e.g., [4,16]) also show peculiarities depending on the
value of A.

Rather recently, critical phenomena on complex networks
have been studied in the spirit of Landau theory [17]. The
power of the latter is that it is independent of the origin of
the interactions between the particles, and therefore it may be
applied to a wide range of systems. The main feature of the
phenomenological theory of critical phenomena on complex
networks that differs from standard Landau theory is the de-
pendence of the coefficients on the moments (k') of the de-
gree distribution (1).

Landau theory for two interacting scalar order parameters
is widely used to analyze systems with several possible types
of ordering (e.g., ferromagnetic and antiferromagnetic, ferro-
electric and ferromagnetic, or structural and magnetic order-
ing). Such combinations of order parameters may be de-
scribed by a model of two scalar order parameters xi,x,,
which are coupled [18,19]. Assuming that the Landau free
energy is analytical and symmetric with respect to the signs
of x; and x, the lowest order coupling is biquadratic,

. a ., b
CEN = (T-TIRP+ [J'+ g, (@)

where X=(x,x,); |f|2=x%+x%; a, b, c are the phenomenologi-
cal Landau parameters; and 7 and T are the temperature and
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the critical temperature, correspondingly. A possible applica-
tion of this model of coupled order parameters to a social
network may reflect the coupling between the preferences for
a candidate and a party in an election (or similar scenarios)
[20]. The free energy (2) corresponds to the free energy of an
n-vector anisotropic cubic model in the case n=2. The latter
is obtained from the O(n) invariant free energy by adding
invariants of the symmetry group B, of the n-dimensional
hypercube [21].

The aim of our work is to generalize the Landau theory
for models on complex networks [17] to the case of two
interacting order parameters with a free-energy symmetry
given by Eq. (2). The structure of our paper is as follows.
The next section (Sec. II) lays out the basic assumptions of
the theory and the peculiarities of the free-energy construc-
tion and compares the approach with a microscopic model.
Section III describes the stable states and the phase diagrams
of the system. The behavior of the thermodynamic functions,
the isothermal susceptibilities, and the heat capacity is de-
scribed in Sec. IV. We conclude with an outlook in Sec. V.
Some details of our calculations are given in Appendixes A
and B.

II. FREE ENERGY

This section is devoted to the construction of a general-
ized Landau theory for a system with two coupled order
parameters on a network (Sec. Il A). Besides, we derive a
corresponding free energy starting with a microscopic spin
Hamiltonian and compare both approaches (Sec. IT B).

A. Generalized Landau theory

In the spirit of the Landau approach we assume that the
system may display some ordering which can be quantita-
tively characterized by two order parameters x; and x,. For
convenience let us introduce a vector ¥=(x;,x,). Following
the work of Ref. [17], we assume that the Landau free energy
per site is not only a function of the order parameters, the

conjugated field h, and the temperature but also depends on
the node degree distribution P(k),

kmax
O T,h) = J dk P(k)f(% k) — hx, (3)
1

where f(X,kX) represents the contribution to the free energy
of an individual node of degree k and k,,,, is the maximal
node degree of the network. Note that k,,,,— ° is implied for
an infinite-size system with a power-law node degree distri-
bution as in Eq. (1). That f(xX,kx) depends not only on the
order parameters x; and x, but also on kX may be understood
by simple reasoning. It reflects that any node with k neigh-
bors is subjected to a field kX of these neighbors.

The next basic assumption in the case of a scalar order
parameter x is that f(x,kx) is an analytical function of x and
kx [17]. In the case of two order parameters, we assume that
f(¥,kX) is now an analytical function of x,, x,, kx;, and kx,
and may be represented as a series in their powers,
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fERD = 2 finmm xR k)" 1(kxy)"2,  (4)

11,ly,mq,my=0

where J1,1,mm, are functions which in general may depend on

the temperature 7 and an external field h. Moreover, some
relations between these coefficients are implied by the sym-
metry of the system as described by Eq. (2). In this case the
function f(x,kx) may be represented as

4 2

2 4
FED) = fot+ 2 a7+ 2 bkl + 2 ekl 2 xh+ -,
i=0 i=0 =0 p=1

(5)

where fy, a;, b;, c¢; are convenient notations for the coeffi-
cients f 1m m,-

Naturally, the free energy (3) must be finite if the order
parameters are finite. This condition is satisfied in particular
if the behavior of the function f(¥,k%) at large k|¥|— is
bounded by

F(F,kF) ~ k]

., k|E] — 0. (6)

Assumptions (3) and (5) as well as condition (6) serve as our
basis to analyze the phase transitions in the coupled order-
parameter system following the standard approach of Landau
theory [22].

Substituting Eq. (5) into Eq. (3) and taking into account
that the coefficient of |#|? in the free energy is equal to zero
at the critical point, the equation for the critical temperature
T, as a function of the moments of the degree distribution is
found in the same manner as in the case of a scalar order
parameter [17] to be

aO(Tc) +a; (Tc)<k> + aZ(Tc)<k2> =0. (7)

If ay(T,)=0, the critical temperature is a function of (k%)/(k).
This statement is in accordance with the exact result for the
Ising model on networks obtained analytically [10,11] and
confirmed numerically [12], where T follows

11 &)
T 21n<(k2>—2<k) ‘ ®

c

Before we embark to calculate the free energy, let us dis-
cuss an essential point that is the origin of many of the pe-
culiarities of cooperative phenomena on networks. For scale-
free networks with a node degree distribution as in Eq. (1)
one finds in general that all moments (k%) with i<\ -1 are
finite, whereas all moments with i=A-1 diverge. If we re-
strict the series in Eq. (5) to the fourth power of the order
parameter, there are no relevant divergent moments for
\>5. Nevertheless, if (k*) or lower moments of the degree
distribution are divergent (A =<5), as often found for real net-
works, the free energy (3) at first sight may seem to be infi-
nite for any nonzero values of the order parameters, a behav-
ior which is certainly unphysical. In fact, the correct way to
calculate the free energy is to take into account all the orders
of series (5). This procedure ensures a behavior of the func-
tion f(x,k%) at large values of k|¥| — as described by Eq.

011108-2



COUPLED ORDER-PARAMETER SYSTEM ON A SCALE-...

(6). Therefore, we collect all terms in Eq. (5) containing k'
with i=N\—1 together with the highest orders of series (5) in
a function g(x,kx) as follows:

F(F D) = fo+ 2 ak|7? + 2 bk 7* + E ck’Z

i=0 pu=1
+ g(¥,kx). )

Here i, is the maximal integer that satisfies both conditions

=2 and i, <A-1. Respectively, i, is the maximal integer
that satisfies both iy=4 and iy <A—1. Now it is straightfor-
ward to integrate the part of f(x,kx) that does not include
g(¥,kx). Any peculiarities are connected with the integration
of g(x,kx). Let us therefore investigate the properties of this
function. Comparing Eq. (9) with Eq. (5) one finds that for
small values of k|| and for 3 <<\ =5 this function behaves as

4

+
g(£.k0) = by(K|H) + ¢, e

(k|f|)4 k|7 — 0. (10)

For 2<A\ =3 one finds the following behavior:

4, 4
X +Xx
82D = ax(Kl])* + (bz o 2) ekl

R

+<b3+C3 |_)|4 )|x|(k|_)|)3

4
Xp+ X,

4
+<b4+c4 e )(k|x|)4 k% — 0. (11)

We do not consider the case A =<2 here as far as then (k) is
not defined.

In order to satisfy condition (6) for a finite free energy, the
behavior of g(¥,kx) is restricted for large values of
k|x|— c by the highest explicitly written term of f(X,k%) in
Eq. (9). Namely, for k|| — o, g(¥,k%) is restricted by

(Kx)3, 4<n=5
g(%,kx) ~ &HV 3<\=4 (12)
2<N=3.

To perform the integration of g()? ,kx) in Eq. (3), note that it

-)’ _))E
(10)=(12)]. Let us pass to a new variable y=k|x|, which
ranges from || to infinity for infinite-size networks. For a
network with a power-law node degree distribution (1), one

may then write
o0 ) ocdy R
| D=t | Been. 03)
|#

As only the asymptotics of g(xX,y) are fixed, let us write

“dy fay
fjg(x,y)—f —gEy), (14)
‘y s Y s Y

X|; obviously,
both sides of this expression do not depend on &. The first
term on its right-hand side is convergent, due to the
asymptotic behavior (12). In the second term g(¥,y) may be
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replaced by its expansion for small values of y [Egs. (10) and
(1D].

Following this procedure, one may obtain the free energy.
Details of the integration of expression (14) for the case
4 <\ <35 are given in Appendix A (analog calculations can
be performed for other values of \). In the following, we will
consider zero external magnetic field h=0 and drop the ex-
plicit h dependence from our notations. Let us present the
resulting expressions for the Landau free energy for different
ranges of values of \. We treat the cases (a) A>35, (b) \=35,
(c) 3<A<3, (d) A=3, and (e) 2<N<3. As we will see,
differences between the usual Landau theory and that on a
scale-free network become apparent starting from the mar-
ginal case A=5.

(a) Case A>5. In this case the free energy may be found
easily by substituting Eq. (5) into Eq. (3) and performing the
integration. The free energy reads

a pM ™
O 1) = fo+ 5 (T= T+~ [+ TX?X% (15)

The specific network properties are expressed by the coeffi-
cients

g”‘ T,) = a,(k) + a(k?) (16)

BN =4b, kY, ™ = ey (kY. (17)

As seen below, Eq. (16) also holds for 3<A=35.
(b) Case \=5. In this case the free energy reads

DT =fy+ = (T T.)|%* + —|)?|4ln— + Txlxz In—.

c()‘) 1
o

(18)

In this marginal case the free energy displays logarithmic
corrections to the standard mean-field behavior. The coeffi-
cient a(T—-T,) is described by Eq. (16) and the other coeffi-
cients are as follows:

BN =4A(by+cy), M =-8Ac,. (19)
(c) Case 3<<A<5. Here, the free energy reads
a bW W™ xix?
DE,T) = fo+ —(T-T.)|&* + — | + — 22!
(X ) fO 2( c)|x| 4 |)C| 4 |,f|4 | |

(20)

In this case the free energy (20) explicitly depends on \. The
coefficient a(T—-T,) is also described by Eq. (16), whereas to
get expressions for b and ¢™ from the integration of
g(%,kx), one needs to perform explicit calculations in parallel
to those presented in Appendix A.

(d) Case \=3. Here, the free energy reads

DX, T) = fo+ Clx* - D|)?|21n— +E

Q|
| e

% (@21

(e) Case 2<<A<3. In this case we find a free energy of
the form
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22
XX
OF,T)=fo+ C'|7>+D' | + E’|IT|42|)?|"". (22)
X
For cases (d) and (e) we give explicitly only the expres-
sions for D (for N\=3) and C’ (for 2<\<3) as

2
N (23)

D= —Aaz,

A
C'=a k) - —

3
For an example of how to calculate the other coefficients by
integration of g(xX,kx), see Appendix A.

Note, that for 2 <<\ =3, the term of order ||* is no more
the leading one. Terms of lower order of magnitude become
relevant. In particular there is a term |%]In|%|~' for A=3 and
a term |¥M! for 2 <A <3.

Before passing to the details of the phase diagram that
results from the expressions for the Landau free energies
(15), (18), and (20)—(22), we first proceed to show that the
Landau free energy may also be derived from a spin system
on a network by calculating its partition function in the sim-
plest of approximations.

B. Anisotropic Hamiltonian

One of the ways to get the Landau free energy with two
coupled scalar order parameters is to start with two coupled
spin subsystems [23]. Another way is to consider a single
spin system with a cubic anisotropy term. Let us use the
second option, considering a spin model on a complex net-
work described by a Hamiltonian with an anisotropic term

N 2

H=-JX 5 5+uX 255, (24)

(g i=1 v=1

where §; and §; are spins on nodes i and j correspondingly, J
and u are the coupling and the anisotropy constants, the no-
tation X 5 denotes the summation over all pairs of con-
nected nodes, the index v numbers the components of the
two-component vector, and §i~§j=2%:1sy,,~s,,’j is a scalar prod-
uct. Again, as above we will consider the case when the
network node degree distribution obeys a power-law decay
(1). Note, that Hamiltonian (24) represents an n-vector an-
isotropic cubic model [21] in the case n=2.

Here, we consider Hamiltonian (24) in the spirit of a
mean-field approach. Applying the mean-field approach to a
model that is defined on a regular lattice (equal degree k for
all nodes), each node is characterized by the same mean spin
(5) and experiences the effective field (k)(s) of its (k) neigh-
bors. In the case of a complex network, this assumption may
be applied only to nodes with the same degree: in the sim-
plest approximation each k-degree node experiences the
same mean spin {5);. In return, the mean spin value per node
(5) may be expressed in terms of (5); as

()= 2 P(k)(S),. (25)
k

On the other hand, it can be found from the thermodynamical
definition
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(H=- (—ﬁG({’h)) : (26)
on /),

Here G(T,h) is the appropriate thermodynamical potential
and /1 is an external field.

Node i experiences the effective field of its k; neighbors.
This field may be quantitatively characterized by the mean
value & of the spins surrounding the ith node [10,11],

1
F=—25 (27)
ki'G)
Here the sum over j spans the k; nearest neighbors of node i.
Now, in the spirit of the mean-field theory one assumes that
&' does not depend on the node number i,
#=& i=1,...,N. (28)
Note, that the above defined value & differs from the mean
spin value per node (§). Equation (26) gives us the relation
between the mean spin (5) and the effective spin & per neigh-
bor.
To proceed with Hamiltonian (24), we introduce the de-
viation of every spin component s,,; from the corresponding
component of the average spin per neighbor &,

As,;=5,,—0,. (29)

Substituting s, ;=0 ,+As,; into the scalar product in Eq. (24)
and neglecting the terms of order O((As)?) we arrive at the
mean-field Hamiltonian,

N
Hyp=2 Hyp (30)
i=1
with
1 2 2
Hyp=SIR)0% =Tk 2 0y, +u 2 sy (1)
r=1 r=1

Here, 02:0f+0%. Now, the partition function is reduced to a
product of single-site traces,
N .
ZMF= H Trl‘ e_H;WF/T. (32)
i=1

Here, the single-site trace Tr;(---) denotes the integration
over all possible directions of s,

Tri("')=fd§i5(L—|§i|)("'). (33)

The ¢ function ensures that all spins §; have the same abso-
lute value L. Substituting Eq. (31) into Eq. (32) and taking
the trace (some details of the calculations are given in Ap-
pendix B) one arrives at the free energy per site,

F(&,T)=—-T/N In Zy. (34)

As usual in the mean-field approach, the free energy (34)
depends on the macroscopic mean-field variable . The ex-
pression for the free energy per site reads
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N
1 »
F(6,T) = Z—VE f(6.k;) (35)
i=1
with
. 172 .
f(6.k;6)=—T In(27L) + Eﬁki|§|2
L*| Lk|E)  LklE)
~Tn| 1ok |E) - == [62 + 61
(“ (O | R 3T
2
+1,(k|E) > é“/lél“]) (36)
v=1
and

. JL
&= 7 (37)

In Eq. (36), 1,(z) are modified Bessel functions [24] of the
first kind,

1
In(Z) — _% e(z/2)(w+l/w)w—n—1dw. (38)
277i

It is instructive to observe that in Eq. (36) the function f
depends both on k& and on & [via the second term in Eq.
(36)]—a property postulated in the Landau approach (see
Sec. IT A).

We now replace the sum over nodes in Eq. (35) with a
sum over node degrees,

k,

max

N
l < R
F(@1) = 2 (6.k6) = 2 PIOf(Gk5).  (39)
i=1 k=1
Here P(k) is the density of nodes with degree k (1) and
f(&,k&) represents the contribution of a single k-degree
node. Note that f(&,k&) actually depends on ¢ and ko,

f(6.k6) = f(6 ko). (40)
Therefore, we further replace the sum over k in Eq. (39) with
an integral over k (3) and introduce y=ko as the variable of
integration,

F(¢,T)= 0" f P»)F(G,y)dy. (41)

The convergence of integral (41) for large y can be derived
from the asymptotic behavior of the function 7,(z) as fol-
lows[24]:

I1,(z) ~ 7— %, (42)

\

Namely, substituting Eq. (42) into Eq. (36), one finally ar-
rives at
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f@y) ~y. y—ee. (43)
The last estimate, together with the power-law behavior (1)
proves the convergence of the expression for free energy (35)

for A>2.

The behavior of f‘(&,y) for small y— 0 and a small aniso-
tropy parameter u/T<<1 is characterized by the smallest term
of the Bessel function expansions [24] in

7 2
1(2) = (%) PO (44)

o k! T(v+g+1)

where I'(p) is the Euler gamma function. Now, substituting
Eq. (44) into Eq. (36) one arrives at

o) =for Ly 1JL? , 1 ( 49uL4)(JL)
ay=forploy ==y g\ - )
1 (JL)* o} + o
4 1 2 4
— 45
Tt T 2 0T 45)
with
fo=—TIn(27L) + 3ul*. (46)

We will perform the integration in Eq. (41) using the expan-
sion of f(&,y) (45) and its asymptotics (43) at y — oo,

Those terms of expansion (45) that are well behaved with
respect to the integration in Eq. (41) may be easily inte-
grated. These are the terms, in which y* appears with
u<\—1. The integration of the remainder of series (45) [let
us denote it as g(7,y)] needs some special care. Using the
asymptotic behavior of g(&,y) at small and large values of y,
the integration is to be performed in the same way as for
g(x,y) (see Sec. IT A) to obtain the free energy as described
above.

To complete the calculations we now pass from the aver-
age spin & per nearest neighbor to the mean spin (5) of a
node. Solving Eq. (26) for (5) one finds in a linear approxi-
mation in ¢ and u,

2
@="%5 @)

Substituting Eq. (47) into Eq. (45) one finally obtains the
free-energy density as

f(<§>9k<§>)=f0+‘]<k>2L4k<§>2 <k>2L2k2<§>2
T 49uLly , 4
+4(k)4L4<1 8T )k o+ 24<k>4(<s'>
+(s)h) + e (48)

Note that taking into account higher-order corrections in Eq.
(47) does not change the free energy at the critical point.
Expression (48) serves as an example for a microscopic
interpretation of the phenomenological Landau free energy
®(x,7T) [Egs. (3) and (5)]. Indeed, the two-component order
parameter X in Eq. (5) may be interpreted as the two-
component mean spin (magnetization) per site (§) in Eq.
(48). The remaining phenomenological Landau parameters
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may be found by direct comparison of expressions (5) and
(48). In this way, the value of f;, in Eq. (5) has a microscopic
representation in terms of Eq. (46), while the coefficients g;
read

27
C I
Recall that in the frames of the Landau approach the assump-

tion ay=0 leads to the dependence of T, on (k*)/{k). Now we
find the expression for 7, in the microscopic model as

ag= O, ag a, = (49)

- <k>2L2'

_ILR)

RS (50)

The values for the other coefficients in the Landau expansion
are as follows:

bi=c,=0, i=0,....3, (51)
e (B
a7 8 T ) YT upt

Moreover, the microscopic approach allows us to estimate
the temperature dependence of the proportionality coeffi-
cients in the free-energy expressions. The latter is of primary
importance for the case 2 <<\ =3, when the critical tempera-
ture diverges. Then

c.C'~T1T* DD ~T, EE ~T°. (53)

In the following, we pass to a more detailed analysis of the
Landau free energy (3).

II1. PHASE DIAGRAMS

Having determined the behavior of free energy (3), let us
investigate the stable states of the system. The latter may be
found from the minimization of the free energy. The condi-
tion of stationarity requires the first derivatives of the free

energy to vanish,
IPF,T)

IDET
9D 0. (54)
o7x1 (9)62

The stationary point is a minimum if both eigenvalues of the
matrix of second derivatives

~ PD(X,T)

v H s =172 55
O dx, dx, e (53)

are positive. This condition may also be written as

Re(w,,) >0, det(w,,)>0, wurv=1.2. (56)

From a physical point of view, the minimum of the free
energy requires positive isothermal susceptibilities. In the
following we consider the stable states of the system with
coupled order parameters for the relevant ranges of the ex-
ponent A, discussed for the generalized Landau free energy.

A. Case A\>5

For A >5 the system is described by the Landau free en-
ergy (15), whereas the type of the ordering below T, depends

PHYSICAL REVIEW E 80, 011108 (2009)

(N

FIG. 1. The phase diagram for the coupled two-component
order-parameter model (2) on a complex scale-free network. The
picture shows what type of order is realized in the different phases
depending on the free-energy parameters b and ¢™. The blank
part of the phase diagram corresponds to absence of a stable phase.
An ordered phase exists only if 5 >0. The sign of the coefficient
¢™ separates two phases. Namely, positive values of ¢ >0 corre-
spond to phases with only one nonzero order-parameter component
([1,0] or [0,1]); negative values ¢ <0 that satisfy the condition
4pW+¢M >0 correspond to the ordered phase [1,1], where both
order parameters have the same nonzero value.

on the interplay between the fourth-order couplings. If ¢
>0 and HbM>0, the system is characterized by order-
parameter components

a
X = \/W(TC—T)B, x,=0. (57)

If ¢ <0 and 46™ +¢™ >0, both order parameters have the

same value
2a
— . — = _T\B
X=X = V4b()‘)+c()‘)(TC T)F, (58)

with S=1/2. Here and below we do not write explicitly one
more solution x;=0, x,# 0 which is symmetric to Eq. (57)
and which is stable under the same conditions as the solution
x1#0, x,=0. The resulting phase diagram is shown in Fig.
1. The blank parts of the phase diagram correspond to cases
where no stable state exists. For these values of a, b, and
¢™ the condition of stability of the thermodynamic potential
cannot be satisfied [i.e., the asymptotics ®(x,7)— for
|| —c° do not hold]; therefore, the system is undefined for
this range of parameters.

B. Case A=5

If the exponent A is at its marginal value A=5, the free
energy is described by Eq. (18). For temperatures below T,
stable states exist only if 5 >0. For ¢™ >0, the system is
described near the critical point 7— T, by an ordered phase

with
O Rt Vi
NN [in(r, - 1)

If —4b™ <M <0, the ordered phase at T— T, is character-
ized by the order parameters

x,=0. (59)
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B a (T.-T)"
=0 =N G w N e 60

Note that expressions (59) and (60) represent approximate
solutions of Eq. (54), which is transcendental when consid-
ering the free energy (18). Both phases are characterized by
the same value of the critical exponent S=1/2. For other
values of b and ¢, the free energy (18) does not lead to
any equilibrium stable state, as in the case A >35. These re-
sults are also depicted in the phase diagram in Fig. 1.

C. Case 3<A<S5

For degree distributions governed by an exponent in the
range 3 <A <35, the system is described by the free energy
(20). Below T, stable states exist only if b >0. Namely,
there are two stable phases: one with

( 4a
X1 =

1/(\=3)
6C:Tﬁﬁg> (T.-T)F x=0  (61)

and a second one with
1 ( 16a

FERE R - 1)@ 4 V)

1/(\=3)
) (Tc - T)'B7

(62)

where 8= )\173 The regions where these states are realized are

shown in the phase diagram Fig. 1. If ¢ >0 the system is in
the stable state (61). Otherwise for negative ¢ <0 and
4b™N4+cM>0, the system is described by the order-
parameter components (62). As observed earlier for larger
values of \, the stability conditions (54) and (56) cannot be
satisfied for other values of 5™ and ¢™ in the free energy
(20).

We conclude that if (k*) diverges but (k%) is finite (3 <<\
=35), the critical behavior differs from the classical mean-
field behavior. Furthermore, if A=35, logarithmic corrections
appear, and if 3<<A <5 the critical exponents are functions
of N\. Note that for all values of A>3 considered above there
exists a finite critical temperature. This will not be the case
for the values of N considered below.

D. Case 2<A=3

When the exponent A\ is in the range 2<<A =3 and the
second moment (k%) of the node degree distribution (1) di-
verges, one may infer from Eq. (7) that the order-disorder
phase transition does not occur at any finite temperature.
Taking into account that at 7=0 the system is ordered, the
system keeps order at any finite temperature, as has been
confirmed for the Ising model on the infinite-size Barabasi-
Albert scale-free network [8,9].

In the case \=3, the free energy is given by Eq. (21). If
the parameter D is positive as follows from Egs. (1), (23),
and (49), the system is always ordered. The type of order
found depends on the parameter E. If E is positive only one
order parameter has nonzero value,

_(2C+D)/2D’ Xy = 0. (63)

X1=e€

For negative values of E both order parameters are nonzero
and have equal values
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X| =Xy = Lre—(4C+2D+E)/4D' (64)
V2

The high-temperature dependence of both order parameters

in view of Eq. (53) follows

xp,x~ e (65)

with some constant 7 determined by the coefficients of the
high-temperature behavior of C and D in Eq. (53).

In the case 2<<\ <3 the system is described by the free
energy (22). Assuming the anisotropy parameter to be small
(E'<D'), one finds stable states of the system. If C'>0
[corresponding to Egs. (1), (23), and (49)] and D' <0, the
system is always ordered and the type of order depends on
the sign of the anisotropy parameter E’. Namely, if £’ >0,
the ordered phase is characterized by

2 \VO=3) o\ 1U-3)
X = _)\_1 —E . .X'2=0. (66)

If E' <0, both order parameters are nonzero with

2(9-0)/2\ 1/(A-3) c' 1/(A=3)
X =Xy = ( ) ( ) . (67)

A—1 4D +E'
Taking into account the high-temperature dependence of
C’ and D' (53), the temperature dependencies of the nonzero
order parameters for 7— cc can be found as

X1,Xp ™~ T_l/(3_)\). (68)

This corresponds to the scalar theory results [10,11]. As one
may expect, for all 2<<A\ =3 both x; and x, vanish only at
infinitely large temperature.

IV. REACTION OF THE SYSTEM TO AN EXTERNAL
ACTION

A. Isothermal susceptibilities

In the case of two order parameters, the behavior of the
system in an external field is described by two quantities.
The longitudinal susceptibility y; describes the reaction of
the system to an external field applied along the order-
parameter direction. In turn, y, describes the reaction to a
transverse external field.

In the disordered state and in the absence of an external
field the system is isotropic and therefore there is no differ-
ence between ) and y . In the general case the susceptibil-
ity matrix y,,=(dx,/dh,)|r (see, e.g., [25])

X,u,v= ,uVXH+(1 _5,LLV)XL» /’L7v=172 (69)
depends on both y; and x,, which may be found as the
inverse eigenvalues of the matrix of second-order derivatives
of the free energy (55). Here &,,, is the Kronecker symbol.

Thus, above the critical temperature 7> T, both suscepti-
bilities have the same dependence, for all values of A >3,
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1
x=xi=_(T-T)7 (70)
with the standard mean-field critical exponent y=1. As men-
tioned above, there is no disordered state in a scale-free net-
work of infinite size with 2 <<\ =3.

For all A>3 and below the critical temperature both y;
and y, follow a power law with the mean-field critical ex-
ponent y=1, as also found for the case of a scalar order
parameter. Furthermore, the absolute value of the longitudi-
nal susceptibility y; coincides with the susceptibility y found
for the scalar case [17]. Our results are

1
—(T.-T)7, A>5
2a
Xi= (71)
T.-T7)7, 3<A=S5.
()\_3)a(c )

The absolute value of the transverse susceptibility y, de-
pends on both \ and the type of order. So, for A\>5

26N
T(TC_T)_’}/ for x=[1,0]
ac
X1 4p™ 4 M (72)
W(TC—T)_Y for x=[1,1].

As one may see from Eq. (72), when the coefficient ¢M=0,
and thus the system described by the free energy (2) becomes
isotropic [26], the transverse susceptibility diverges y, —
for any T<T.. This behavior of y, is quite physical and is a
consequence of the free-energy symmetry: an infinitely small
external field applied in a direction perpendicular to the order
parameter immediately changes the order-parameter orienta-
tion. This is the Goldstone phenomenon, corresponding to
the existence of a soft excitation mode in the ordered phase
[25].
For 3<\=S5, the transverse susceptibility is given by

A —1)p™
%(TC—T)_y for x=[1,0]
X1= ™4 0
A=1)(@p™ +
= )éac(x) - )(TL-—T)” for ¥=[1,1].

(73)

As discussed above for the case A>35, again the transverse
susceptibility diverges for a vanishing parameter ¢V =0.
For \=3 the longitudinal susceptibility reads

Xi=7-~T" (74)

The sign of the transverse susceptibilities depends on the

phase,
12E, x=[1,0]
= 75
XL {—1/2E, =[1.1]. (75)
For 2<\<3 the behavior is similar. The longitudinal
susceptibility follows
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1

- 2
T 2(3-N)C o (76)

Xi

while we have different transverse susceptibilities in the two
stable phases,

\-1D
A R[]
4 CE -
XNZNI 14D +E
— x=[1,1].
16 CE

As we learn from the above equations (70)—(73), the sin-
gularity at the critical point is governed by the mean-field
value of the critical exponent y=1. This reproduces the be-
havior observed within the Landau theory for systems with a
scalar order parameter on scale-free networks [17]. In this
respect passing to a system with a more complicated sym-
metry does not appear to modify the universal critical expo-
nents. Note however, the significant change in other univer-
sal quantities, namely, the susceptibility amplitude ratios.
Defining the amplitudes for the susceptibilities by

{rﬂ(r- T T>T.
P =

78
r (r.-n—, 1<7,. i=1,1, (78)

let us compare the amplitude ratios I',/I'_ for longitudinal
and transverse susceptibilities for different phases. Recall
that for a scalar order-parameter, Landau theory gives
I',/T'_=2 [22]. Correspondingly, for the free energy (2) one
finds for the longitudinal susceptibility

(/) =2 (79)

while the amplitude ratio for the transverse susceptibility de-
pends on the type of the ordered phase,

T ¢/2Db, x=[1,0] %0

T, = —2c/(4b+¢), #=[1,1], (80)
where the notations [1,0] and [1,1] indicate the correspond-
ing phases. As one can see, the amplitude ratios (80) depend
on the couplings b,c. For N\>5 the free energy (15) is
equivalent to that of Eq. (2) however with coefficients b and
¢ given by Eq. (17). Thus the ratio I',/I"_ attains the same
values as for the systems with the free energy (2). For
N=35 the ratio I',/T"_ is a function of A, similar as it holds for
the order-parameter critical exponent B. So, the amplitude
ratio for the longitudinal susceptibility for all 3 <<\ =5 reads

Ty =(\=3). (81)

For the transverse susceptibilities the ratio depends on the
phase and, respectively, on the values of the coefficients of
the free-energy function. Namely, the susceptibility ratios are
26
—1)pN >

8C()\) o
~ ooy X=[11].

x=[1,0]

Tyr), = (82)

The amplitude ratios for the different ranges of A and phases
are summarized in Table I. Summarizing, we note that for all
the range of A>3 (where the critical temperature T, exists),
the behavior of the system with respect to an external field is

011108-8
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TABLE 1. Amplitude ratios for different ranges of the N expo-
nent. Second column: amplitude ratio for the longitudinal suscepti-
bilities; third and fourth columns: amplitude ratio for the transverse
susceptibilities for two different phases, denoted by [1,0] and [1,1],
respectively.

A T/ (/TD) i 0

cMNy2p™
2¢M7(n=1)p™

(VA NNRTIRY

2N/ (4N 4cW)
—8cM/(N=1)(4bN +cM)

A>5 2
3<N=S5 A-=3

governed by a mean-field critical exponent y=1, but the am-
plitude ratios have nontrivial forms.

B. Heat capacity

The heat capacity describes the behavior of the system
with respect to a change in temperature,

ds
ch:T(ﬁ)A (83)

In the frames of the Landau theory, the coefficient of | in
the free energy changes its sign at the critical temperature.
The other coefficients are assumed to be temperature inde-
pendent. Note that for a phase transition on a scale-free net-
work, this assumption holds also for A>3, whereas for 2
<N =3 the temperature dependencies of the coefficients are
described by Eq. (53). Then one may find the entropy of the

system as
P
e [20). -
ar |,

which for A >3 reduces to the simple expression
a
§=-—|%%, 85
) (85

where |%| is a function of temperature and external field.
Substituting stable solutions that follow from Eq. (54) into
Eq. (84), one finds the entropy S at fixed external field
h=0 for each phase. Respectively, the heat capacity may be
found by taking the derivative of the entropy with respect to
the temperature in Eq. (83).

It is known that for a second-order phase transition in
simple magnets the Landau theory predicts a step in the heat
capacity at the critical temperature 7.. The behavior of the
heat capacity for a system on a scale-free network is richer.
In the standard mean-field region A > 5 and below T the heat
capacity decreases linearly with the decrease in temperature.
At the critical point the step in the heat capacity is

aZ

oy, = WTC. (86)

Taking into account the microscopic relations (49), (50), and
(52), one obtains the step in the heat capacity as follows:
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G

oc, =2 ,
"N

(87)

which vanishes for A — 5. For 3 <<\ =35 there is no step of ¢,
at the critical point. Namely, for A=5 we find the following
expressions for the heat capacity at T<<T, in the phases [1,0]
and [1,1], correspondingly:

(12

= PN (T, — 7)1 in phase [1,0], (88)

Ch

_4ad T
4bW 4 (M in(T, - T)7!

ch in phase [1,1]. (89)

In the case 3 <A <5 the corresponding formulas read

a 4a 2/(\=3)
PENZ3 (= 1)p™

XT(T, - T)®™M*®3)in phase [1,0],  (90)

a |: 16a :|2/()\—3)
DEN=3L (= D@6 + M)
XT(T,—T)5™MA3 in phase [1,1].  (91)

As one can see from Egs. (88)-(91), the heat capacity
vanishes as 7— T, which differs from the case A>5, where
the corresponding value at T, is given by Eq. (86). Never-
theless, a maximum of ¢, is still present for 3<<A\=5. Only
now, it is shifted from 7, to the temperature region 7<<T..
The low-temperature behavior of the heat capacity at 3 <A
=5 resembles that for A\>5: ¢, ~T. The heat capacity van-
ishes both at 7=0 and T=T. and possesses a maximum at an
intermediate temperature 0 <7, <<T,.. For A\=5 this tempera-
ture coincides with 7., whereas for lower values of N\ we find

A=3

TO:TTC’ 3<AN<S. (92)

Taking into account the explicit calculations of Sec. IT A,

JL?
T0=()\—2)T, 3N (93)

In Fig. 2 we show the typical behavior of ¢, for different
values of 3 <\ =5. There, we represent Egs. (90) and (91) in
the form

T,

c

Ch=Co 1 (94)

T,

c

T ( T )(5—)\)/()\—3)

and plot ¢,/ ¢y as a function of a scaled variable 7/T..

As N\ approaches from above 3, the critical temperature
increases and becomes infinite for 2<<A =3: the system is
always ordered and the type of the ordered phase is governed
by signs of the coefficients E,E’ in the Landau free energies
(21) and (22). For both ordered phases we obtain that the
high-temperature behavior of ¢, is described by
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FIG. 2. (Color online) Typical behavior of the heat capacity for
different values of N\ in the range of 3<<A=5. The dotted curve
shows the position of the maximum at temperature T, [see Eq.

(92)].

1?7, A=3
cp~ T-O-DIG-N 9 <\ <3, )

where ¢ depends on the coefficients defined in Eq. (53).

As we have observed for the order parameter and the
susceptibility, the character of the temperature dependence of
the heat capacity for the system of two coupled order param-
eters reproduces the one obtained for a single scalar order
parameter [11,17]. Note however the different amplitudes for
this behavior resulting from Egs. (90) and (91).

V. CONCLUSIONS

Models that display phase transitions with two coupled
order parameters serve as archetypes to describe the phase
behavior in systems with several possible types of ordering
[18,19]. For example, a system may display both ferromag-
netic and antiferromagnetic orders with a coupling between
the two. Others may show magnetic and superconducting,
ferroelectric and ferromagnetic, or structural and magnetic
order. These models are known for their rich phase diagrams
and nontrivial critical behavior. Inspired by these observa-
tions, this paper investigates the phase transitions of a corre-
sponding model defined on a scale-free network. Besides the
academic interest, this problem may have implications for
models of opinion formation on social networks when opin-
ions on different issues may be coupled as, e.g., the prefer-
ences for both a candidate and a political party [20].

Our analysis was based on thermodynamic arguments in
the spirit of Landau theory, as suited for the description of
phase transitions on scale-free networks [17]. To add a mi-
croscopic background to the phenomenological approach we
have also studied a particular spin Hamiltonian that leads to
coupled scalar order behavior using the mean-field approxi-
mation. Our results show that for the scale-free networks
with a degree distribution governed by an exponent A >2 the
system is characterized by either of two types of ordering.
Either one of the two order parameters is zero (the [1,0] or
the [0,1] phase) or both are nonzero but have the same value
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(the [1,1] phase). Along with the critical behavior of scalar
order-parameter systems on scale-free networks, the order of
the phase transition in the coupled scalar order-parameter
system depends on the decay of the node-degree distribution.
For rapidly decaying distributions (A=5) the second-order
phase transition is similar to that described by usual Landau
theory. Nevertheless unique features appear as A decreases:
whereas the magnetic susceptibility (and higher than second
derivatives of the free energy with respect to the magnetic
field) remains divergent at T, for all 3 <A <5, the order of
the lowest divergent temperature derivative of the free en-
ergy depends on \ [27]. Namely, as seen from Egs. (90) and
(91), it is the third-order derivative for 4 <\ <35, the fourth
order for 3% <A <35, and so on until it is only the infinite-
order derivative that diverges for A=3: the order of the phase
transition becomes infinite [11,23].

The critical behavior of the model considered gives rise to
nontrivial critical exponents, amplitude ratios, and suscepti-
bilities. While the critical exponents do not differ from those
of a model with a single order parameter on a scale-free
network [17], there are notable differences for the amplitude
ratios and susceptibilities. Another peculiarity of the model is
that the transverse susceptibility is divergent at all 7<T,,
when O(n) symmetry is present. Such behavior is related to
the appearance of Goldstone modes. It is worth to mention a
peculiarity in the behavior of the specific heat. Whereas for
A=5 it has a jump at the critical temperature 7., this jump
disappears for A<<5. The heat capacity vanishes both at
T=0 and T=T. and possesses maximum at an intermediate
temperature 0 <7, <T..

The phenomena observed serve as evidence of a rich criti-
cal behavior caused by scale-free properties of the underly-
ing network structure. An attractive feature for the theoretical
analysis of this behavior is of course that nontrivial effects
are found already in very simple approximations. Natural
continuations of our study will include extensions beyond
the mean-field approach, taking into account order-parameter
fluctuations and, further, studies of dynamic processes and in
particular the critical dynamics resulting at or near the criti-
cal point. Such studies need to be based on more detailed
information about the structure of the network than the de-
gree distribution, such as provided by the adjacency matrix
or the network Laplacian (Kirchhoff matrix), e.g., in terms of
their respective eigenvalue spectra [28,29].
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APPENDIX A

In order to perform the integration in Eq. (14), assume
4 <\ <S5. For other values of the exponent \ the calculations
can be performed in a similar way. From Egs. (10) and (12)
we derive the following asymptotics of g(%,y):

4, 4
X +x
g(f,}’)=(b4+c4 —

i "

)y4, y—0,
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gEy) ~y vy (A2)
To analyze Eq. (14), let us define
N Cdy |
Ql(s’x’)\) =j y_;\g(an)» (A3)
g
Os(e,X,\) = f (). (A4)

From the asymptotic behavior (A2) one may infer that Q; is
convergent. Assuming that near the critical point the absolute
value of the order parameter |¥| <1 is small, we replace the
function g(x,y) in Q, with its expansion (A1) at small values
of y and perform the integration. Then one obtains

“d 44 5-\
f o3 = 0EN) - (b4+ e 2) = as)
B ]
where
+x3\ &
O(%N) = Q,(e,X,\) + <b4+c4 1| I 2>5 e (A6)

Naturally, Q(¥,\) does not depend on & [as [ Eix Zo(x,y) does
not depend on &], while the dependence of Q(x \) on X is
reasonable [see asymptotics (A1) and Eq. (A6)] to be as-
sumed as follows:

+x2

o(x, )\)—v1+v2 T (A7)

where v; and v, are some coefficients, which are in general
dependent on A and the temperature.
Substituting these results into Eq. (13), one obtains

r

%) = AQ(EN)[F!

4
X+ X
<b4+C4 l|f|4 2)|x|4

(A8B)

A
I
5-A

In the region of N considered (4<<\<5) near the critical
point the leading term includes a factor |#*! and corre-
spondingly Q(¥,\) is part of the relevant terms of the free
energy.

APPENDIX B

Here we calculate the partition function (32) with Hj,,
described by Eq. (31). To calculate

N N

Zygw=11Ziyp=T1 Tr, e Hur'T, (B1)
i=1 i=1
we use the following property of the 6 function:
AL~ 5] =2L8L ~ |5 (B2)

and use its Fourier presentation
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1 ("
8(x) = —f dvg ", (B3)
2mi )

Then Z,,, reads

4
Z;WF_ f dSJ dU e OL H e_uOéVI_UO“yz"'JlUV‘Vl
—o0

(B4)
with
—Jk;a? 2T w o J
= 1 N =, i = _ki' B5
zi=e wo=r Ji=7g (B5)
Now, let us use the representation
uy
exp{_ u()sii vz +.]l0-VsVl} CXP{ 2 4}
' .]i 070-1/
Xexp{= oSy +JiT,S i}
(B6)
where exp(—j—;%) is interpreted as
U 074 uo a 1 (uo a )2
exp =
] (90' ]l c?(f 2' Ji do
(B7)

Substituting Eq. (B6) into Eq. (B4), one obtains

uy &
Ji 80'4 ds,,,,-

XJ dvg 3UOL2H exp(- UOSi,i+jiUV9V,i)~ (B8)

—joo r=1

i Zl
Zyrp="—"- i [H exp(

To change the order of integration over §,,; and v,, we mul-
tiply the integrand with exp{a(L*~|5,]*)}, which is equal to
unity due to the constraint. Let us choose « to be sufficiently
large to satisfy (vy+ a)si’i—jiovsyyi> 0. Then one may use the

Poisson integral
* 2 T2
f dx e—ax +bx — \/:eb 14a (B9)
— a

to obtain

LZ' akice 27T 2 4 4 20
Zyr=— f dv e[ oI 100 yit o4
i J g ior

v

r=1

(B10)

Assuming the anisotropy parameter u# to be small and, re-
spectively, uy<<1 we keep only the term linear in u, in ex-
pansion (B10). Then Eq. (B10) may be written as
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Lz,

1
d(l)l' eXp|:EjiL0'(wi + 1/w,):|

) -3 4, 4
w; w; o+ 0
X ;! 1—u0L4{6 — S+ 6 —+ ! 7 2‘1’;4] ,
(j;Lo) JiLo o

(-
AV

where

2Lv
0= (B12)
Jio
The integration path for the variable w; in the integral in Eq.
(B11) ranges from 2La/ j;o—i© to 2La/ j;o+i.
Using the definition of the modified Bessel function of the
first kind,
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1
1(2) = 5 e o, (B13)
Tl
one may write
| L(jLo)  IL(jLo)
;o . 4| g2V =
Zyp=2mLz;\ Iy(jiLo) — upL {6 (jiLo)? JiLo
+
- 40214(1',-La)” (B14)

Substituting Eq. (B14) into Eq. (B1) one finally obtains the
partition function and, respectively, one may find the free
energy per site F(a,T)=—=T/N In Zy;. Again, keeping terms
linear in u, one obtains free energy (35).
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